Making Pre-trained Language Models Better Few-shot Learners

Tianyu Gao*, Adam Fisch*, Danqi Chen

ACL 2021

Reporter: Xiachong Feng

Authors

Tianyu Gao

Adam Fisch

Danqi Chen

Why?

manually created prompts

Prompt-tuning Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference

Automatically created prompts

The three settings we explore for in-context learning

Zero-shot

GPT-3

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

GPT-3

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

without updating any of the weights !

Overview

Figure 1: An illustration of (a) masked language model (MLM) pre-training, (b) standard fine-tuning, and (c) our proposed LM-BFF using prompt-based fine-tuning with demonstrations. The underlined text is the task-specific *template*, and colored words are *label words*.

Automatic Prompt Generation

What is a prompt?

- The key challenge is to construct the **template** \mathcal{T} and **label words** $\mathcal{M}(\mathcal{Y})$ we refer to these two together as a **prompt** \mathcal{P} .
 - 1. Automatic generation of templates
 - 2. Automatic selection of label words

Manual Prompts

Task	Template	Label words
SST-2	$<\!S_1\!>$ It was [MASK] .	positive: great, negative: terrible
SST-5	$<\!\!S_1\!\!> \mathrm{It \ was}$ [MASK] .	v.positive: great, positive: good, neutral: okay, negative: bad, v.negative: terrible
MR	$<\!\!S_1\!\!> \operatorname{It}$ was [MASK] .	positive: great, negative: terrible
CR	$< S_1 >$ It was [MASK].	positive: great, negative: terrible
Subj	$<\!\!S_1\!\!>$ This is [MASK] .	subjective: subjective, objective: objective
TREC	[MASK] : $<\!S_1>$	abbreviation: Expression, entity: Entity, description: Description
		human: Human, location: Location, numeric: Number
COLA	$<\!\!S_1\!\!>{ m This}$ is [mask] .	grammatical: correct, not_grammatical: incorrect
MNLI	$<\!\!S_1\!\!>$? [MASK] , $<\!\!S_2\!\!>$	entailment: Yes, netural: Maybe, contradiction: No
SNLI	${<}S_1{>}$? [MASK] , ${<}S_2{>}$	entailment: Yes, netural: Maybe, contradiction: No
QNLI	$<\!S_1\!>$? [MASK] , $<\!S_2\!>$	entailment: Yes, not_entailment: No
RTE	$<\!\!S_1\!\!>$? [MASK] , $<\!\!S_2\!\!>$	entailment: Yes, not_entailment: No
MRPC	${<}S_1{>}$ [MASK] , ${<}S_2{>}$	equivalent: Yes, not_equivalent: No
QQP	${<}S_1{>}$ [MASK] , ${<}S_2{>}$	equivalent: Yes, not_equivalent: No
STS-B	${<}S_1{>}$ [MASK] , ${<}S_2{>}$	y_u : Yes, y_l : No

Pilot Study

Template	Label words	Accuracy
SST-2 (positive/negative)		mean (std)
$< S_1 > $ It was [MASK].	great/terrible	92.7 (0.9)
$<\overline{S_1}>$ It was [MASK].	good/bad	92.5 (1.0)
$<\!\!S_1\!\!> \mathrm{It} \mathrm{was} \; [\mathrm{MASK}]$.	cat/dog	91.5 (1.4)
$< S_1 > $ It was [MASK].	dog/cat	86.2 (5.4)
$<\!S_1\!>$ It was [MASK] .	terrible/great	83.2 (6.9)
Fine-tuning		81.4 (3.8)
SNLI (entailment/neutral/c	contradiction)	mean (std)
$<\!S_1\!>?$ [MASK] , $<\!S_2\!>$	Yes/Maybe/No	77.2 (3.7)
$<\!S_1\!>$. [MASK] , $<\!S_2\!>$	Yes/Maybe/No	76.2 (3.3)
$<\!S_1\!>?$ [MASK] $<\!S_2\!>$	Yes/Maybe/No	74.9 (3.0)
$<\!S_1\!><\!S_2\!>$ [MASK]	Yes/Maybe/No	65.8 (2.4)
$<\!\!S_2\!\!>?$ [MASK] , $<\!\!S_1\!\!>$	Yes/Maybe/No	62.9 (4.1)
${<}S_1{>}$? [MASK] , ${<}S_2{>}$	Maybe/No/Yes	60.6 (4.8)
Fine-tuning		48.4 (4.8)

when a template is fixed, the better the label words match the "semantic classes", the better the final accuracy is (great/terrible > good/bad > cat/dog).

In extreme cases where we swap plausible label words (e.g., terrible/great), we achieve the worst overall performance

with the same set of label words, even a small change in the template can make a difference.

Table 2: The impact of templates and label words on prompt-based fine-tuning (K = 16).

Automatic Selection of Label Words

Automatic Generation of Templates

$$\begin{array}{l} \longrightarrow < \mathbf{X} > \mathcal{M}(y) < \mathbf{Y} > < S_1 >, \\ \longrightarrow < S_1 > < \mathbf{X} > \mathcal{M}(y) < \mathbf{Y} >, \\ , \longrightarrow < S_1 > < \mathbf{X} > \mathcal{M}(y) < \mathbf{Y} > < S_2 >. \end{array}$$

Figure 2: Our approach for template generation.

• GPT-3

- concatenating the input with up to 32 examples randomly drawn from the training set.
- Drawbacks
 - the number of available demonstrations is bounded by the model's maximum input length
 - mixing numerous random examples from different classes together creates extremely long contexts which can be hard to leverage, especially for a smaller model.

• We randomly sample a single example at a time from each class to create multiple, minimal demonstration sets.

(c) Prompt-based fine-tuning with demonstrations (our approach)

Sampling similar demonstrations

- We only sample examples that are semantically close to x_{in} .
- Pre-trained SBERT
- Sample from the top r = 50% instances for each class to use as demonstrations.

Experiments

Task Formulation

For Train $\mathcal{D}_{train} = \{(x_{in}^{i}, y^{i})\}\}_{i=1}^{K_{tot}}$ $K_{tot} = K \times |\mathcal{Y}|$

 \mathcal{Y} :label space, K training examples per class (=16)

For Dev: true few-shot $|\mathcal{D}_{dev}| = |\mathcal{D}_{train}|$

Classification

$$\mathcal{M}\colon \mathcal{Y} o \mathcal{V}$$
 mapping from the task label space to individual words

 $x_{\text{prompt}} = \mathcal{T}(x_{\text{in}})$ masked language modeling (MLM) input which contains one [MASK] token.

$$\begin{split} p(y \mid x_{\text{in}}) &= p\left(\left[\text{MASK}\right] = \mathcal{M}(y) \mid x_{\text{prompt}}\right) \\ &= \frac{\exp\left(\mathbf{w}_{\mathcal{M}(y)} \cdot \mathbf{h}_{\left[\text{MASK}\right]}\right)}{\sum_{y' \in \mathcal{Y}} \exp\left(\mathbf{w}_{\mathcal{M}(y')} \cdot \mathbf{h}_{\left[\text{MASK}\right]}\right)}, \end{split}$$

Re-uses the pre-trained weights W_v and does not introduce any new parameters.

Regression

 $\begin{bmatrix} v_l, v_u \end{bmatrix} \text{ label space Y as a bounded interval}$ Sentiment Analysis: "terrible" ($v_l = 0$) and "great" ($v_u = 1$) $\begin{bmatrix} v_l, v_u \end{bmatrix} => \{terrible(y_l), great(y_u)\}$

$$y = v_l \cdot p(y_l | x_{in}) + v_u \cdot p(y_u | x_{in}) p(y_l | x_{in}) = 1 - p(y_u | x_{in})$$

 $\mathcal{M}: \{y_l, y_u\} \to \mathcal{V}$ e.g. (*terrible->*bad)

Evaluation Datasets

Tasks

- 8 single-sentence and 7 sentence-pair English tasks
 - 8 tasks from the GLUE benchmark, SNLI
 - 6 other popular sentence classification tasks (SST-5, MR, CR, MPQA, Subj, TREC)

For robustness

• measure average performance across 5 different randomly sampled $|\mathcal{D}_{train}|$ and $|\mathcal{D}_{dev}|$ splits.

	SST-2	SST-5	MR	CR	MPQA	Subj	TREC	CoLA
	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)	(Matt.)
Majority [†]	50.9	23.1	50.0	50.0	50.0	50.0	18.8	0.0
Prompt-based zero-shot [‡]	83.6	35.0	80.8	79.5	67.6	51.4	32.0	2.0
"GPT-3" in-context learning	84.8 (1.3)	30.6 (0.9)	80.5 (1.7)	87.4 (0.8)	63.8 (2.1)	53.6 (1.0)	26.2 (2.4)	-1.5 (2.4)
Fine-tuning	81.4 (3.8)	43.9 (2.0)	76.9 (5.9)	75.8 (3.2)	72.0 (3.8)	90.8 (1.8)	88.8 (2.1)	33.9 (14.3)
Prompt-based FT (man)	92.7 (0.9)	47.4 (2.5)	87.0 (1.2)	90.3 (1.0)	84.7 (2.2)	91.2 (1.1)	84.8 (5.1)	9.3 (7.3)
+ demonstrations	92.6 (0.5)	50.6 (1.4)	86.6 (2.2)	90.2 (1.2)	87.0 (1.1)	92.3 (0.8)	87.5 (3.2)	18.7 (8.8)
Prompt-based FT (auto)	92.3 (1.0)	49.2 (1.6)	85.5 (2.8)	89.0 (1.4)	85.8 (1.9)	91.2 (1.1)	88.2 (2.0)	14.0 (14.1)
+ demonstrations	93.0 (0.6)	49.5 (1.7)	87.7 (1.4)	91.0 (0.9)	86.5 (2.6)	91.4 (1.8)	89.4 (1.7)	21.8 (15.9)
Fine-tuning (full) ^{\dagger}	95.0	58.7	90.8	89.4	87.8	97.0	97.4	62.6
	MNLI	MNLI-mm	SNLI	QNLI	RTE	MRPC	QQP	STS-B
	MNLI (acc)	MNLI-mm (acc)	SNLI (acc)	QNLI (acc)	RTE (acc)	MRPC (F1)	QQP (F1)	STS-B (Pear.)
Majority [†]	MNLI (acc) 32.7	MNLI-mm (acc) 33.0	SNLI (acc) 33.8	QNLI (acc) 49.5	RTE (acc) 52.7	MRPC (F1) 81.2	QQP (F1) 0.0	STS-B (Pear.)
Majority [†] Prompt-based zero-shot [‡]	MNLI (acc) 32.7 50.8	MNLI-mm (acc) 33.0 51.7	SNLI (acc) <i>33.8</i> 49.5	QNLI (acc) 49.5 50.8	RTE (acc) 52.7 51.3	MRPC (F1) 81.2 61.9	QQP (F1) 0.0 49.7	STS-B (Pear.) - -3.2
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning	MNLI (acc) 32.7 50.8 52.0 (0.7)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6)	SNLI (acc) 33.8 49.5 47.1 (0.6)	QNLI (acc) 49.5 50.8 53.8 (0.4)	RTE (acc) 52.7 51.3 60.4 (1.4)	MRPC (F1) 81.2 61.9 45.7 (6.0)	QQP (F1) 0.0 49.7 36.1 (5.2)	STS-B (Pear.) -3.2 14.3 (2.8)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man)	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations Prompt-based FT (auto)	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3) 68.3 (2.5)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2) 70.1 (2.6)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5) 77.1 (2.1)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9) 68.3 (7.4)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3) 73.9 (2.2)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0) 76.2 (2.3)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8) 67.0 (3.0)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1) 75.0 (3.3)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations Prompt-based FT (auto) + demonstrations	MNLI (acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3) 68.3 (2.5) 70.0 (3.6)	MNLI-mm (acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2) 70.1 (2.6) 72.0 (3.1)	SNLI (acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5) 77.1 (2.1) 77.5 (3.5)	QNLI (acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9) 68.3 (7.4) 68.5 (5.4)	RTE (acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3) 73.9 (2.2) 71.1 (5.3)	MRPC (F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0) 76.2 (2.3) 78.1 (3.4)	QQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8) 67.0 (3.0) 67.7 (5.8)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1) 75.0 (3.3) 76.4 (6.2)

	SST-2	SST-5	MR	CR	MPQA	Subj	TREC	CoLA
	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)	(Matt.)
Majority [†]	50.9	23.1	50.0	50.0	50.0	50.0	18.8	0.0
Prompt-based zero-shot [‡]	83.6	35.0	80.8	79.5	67.6	51.4	32.0	2.0
"GPT-3" in-context learning	84.8 (1.3)	30.6 (0.9)	80.5 (1.7)	87.4 (0.8)	63.8 (2.1)	53.6 (1.0)	26.2 (2.4)	-1.5 (2.4)
Fine-tuning	81.4 (3.8)	43.9 (2.0)	76.9 (5.9)	75.8 (3.2)	72.0 (3.8)	90.8 (1.8)	88.8 (2.1)	33.9 (14.3)
Prompt-based FT (m	prom	ot-bas	ed zer	o-sho	t prec	dictior	8 (5.1)	9.3 (7.3)
+ demonstrations	chiova		h hat	tor no	rfarm	2000	5 (3.2)	18.7 (8.8)
Prompt-based FT (a	cnieve	es muc	n bet	ter pe	nonn	ance	2 (2.0)	14.0 (14.1)
+ demonstrations	han the	e maio	ritv cl	ass s	howin	a the	4 (1.7)	21.8 (15.9)
Fine-tuning (full) [†]				adaa i			7.4	62.6
pr	e-enc	oueu r		eugei		DERIA.	QP	STS-B
	(acc)				(acc)	(F1)	QP (F1)	STS-B (Pear.)
Majority [†]	(acc) 32.7	(acc) 33.0	(acc) 33.8	(acc) 49.5	(acc) 52.7	(F1) 81.2	(F1) 0.0	STS-B (Pear.)
Majority [†] Prompt-based zero-shot [‡]	(acc) 32.7 50.8	(acc) 33.0 51.7	(acc) 33.8 49.5	(acc) 49.5 50.8	(acc) 52.7 51.3	(F1) 81.2 61.9)QP (F1) 0.0 49.7	STS-B (Pear.) -3.2
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning	(acc) 32.7 50.8 52.0 (0.7)	(acc) 33.0 51.7 53.4 (0.6)	(acc) 33.8 49.5 47.1 (0.6)	(acc) 49.5 50.8 53.8 (0.4)	(acc) 52.7 51.3 60.4 (1.4)	(F1) 81.2 61.9 45.7 (6.0)	QP (F1) 0.0 49.7 36.1 (5.2)	STS-B (Pear.) -3.2 14.3 (2.8)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning	(acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4)	(acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8)	(acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8)	(acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5)	(acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9)	(F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5)	PQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man)	(acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3)	(acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9)	(acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7)	(acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2)	(acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6)	(F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3)	PQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations	(acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3)	(acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2)	(acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5)	(acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9)	(acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3)	(F1) <i>81.2</i> 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0)	PQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations Prompt-based FT (auto)	(acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3) 68.3 (2.5)	(acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2) 70.1 (2.6)	(acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5) 77.1 (2.1)	(acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9) 68.3 (7.4)	(acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3) 73.9 (2.2)	(F1) <i>81.2</i> 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0) 76.2 (2.3)	PQP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8) 67.0 (3.0)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1) 75.0 (3.3)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations Prompt-based FT (auto) + demonstrations	(acc) 32.7 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3) 68.3 (2.5) 70.0 (3.6)	(acc) 33.0 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2) 70.1 (2.6) 72.0 (3.1)	(acc) 33.8 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5) 77.1 (2.1) 77.5 (3.5)	(acc) 49.5 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9) 68.3 (7.4) 68.5 (5.4)	(acc) 52.7 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3) 73.9 (2.2) 71.1 (5.3)	(F1) 81.2 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0) 76.2 (2.3) 78.1 (3.4)	QP (F1) 0.0 49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8) 67.0 (3.0) 67.7 (5.8)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1) 75.0 (3.3) 76.4 (6.2)

	SST-2	SST-5	MR	CR	MPQA	Subj	TREC	CoLA
	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)	(acc)	(Matt.)
Majority [†]	50.9	23.1	50.0	50.0	50.0	50.0	18.8	0.0
Prompt-based zero-shot [‡]	83.6	35.0	80.8	79.5	67.6	51.4	32.0	2.0
"GPT-3" in-context learning	<u>84.8 (1.3)</u>	<u>30.6 (0.9)</u>	<u>80.5 (1.7)</u>	<u>87.4 (0.8)</u>	<u>63.8 (2.1)</u>	53.6 (1.0)	26.2 (2.4)	<u>-1.5 (2.4)</u>
Fine-tuning	81.4 (3.8)	43.9 (2.0)	76.9 (5.9)	75.8 (3.2)	72.0 (3.8)	90.8 (1.8)	88.8 (2.1)	33.9 (14.3)
Prompt-based FT (man)	92.7 (0.9)	47.4 (2.5)	87.0 (1.2)	90.3 (1.0)	84.7 (2.2)	91.2 (1.1)	84.8 (5.1)	9.3 (7.3)
+ demonstrations	92.6 (0.5)	50.6 (1.4)	86.6 (2.2)	90.2 (1.2)	87.0 (1.1)	92.3 (0.8)	87.5 (3.2)	18.7 (8.8)
Prompt-based FT (auto)	92.3 (1.0)	49.2 (1.6)	85.5 (2.8)	89.0 (1.4)	85.8 (1.9)	91.2 (1.1)	88.2 (2.0)	14.0 (14.1)
+ demonstrations	93.0 (0.6)	49.5 (1.7)	87.7 (1.4)	91.0 (0.9)	86.5 (2.6)	91.4 (1.8)	89.4 (1.7)	21.8 (15.9)
Fine-tuning (full) [†]	95.0	58.7	90.8	89.4	87.8	97.0	97.4	62.6
(2) p	rompt	t-base	d fine-	-tunin	g can	great	ly 🗍	STS-B
② p	orompt	t-base	d fine-	-tunin ard fi	g can	great	ly	STS-B (Pear.)
Majority [†]	orompt outpe	t-base rform	d fine stand	-tunin ard fi	g can ne-tur	great ning	:ly	STS-B (Pear.)
Majority [†] Prompt-based zero-shot [‡]	orompt outpe 50.8	t-base rform ^{51.7}	d fine- stand	-tunin ard fii 50.8	g can ne-tur ^{51.3}	great ning 61.9	: ly 49.7	STS-B (Pear.) -3.2
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning	orompt outpe 50.8 52.0 (0.7)	t-base rform 51.7 53.4 (0.6)	d fine stand ^{49.5} 47.1 (0.6)	-tunin ard fii 50.8 53.8 (0.4)	g can ne-tur 51.3 60.4 (1.4)	great ning 61.9 45.7 (6.0)	49.7 36.1 (5.2)	STS-B (Pear.) -3.2 14.3 (2.8)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning	50.8 52.0 (0.7) 45.8 (6.4)	t-base rform 51.7 53.4 (0.6) 47.8 (6.8)	d fine stand 49.5 47.1 (0.6) 48.4 (4.8)	-tunin ard fi 50.8 53.8 (0.4) 60.2 (6.5)	g can ne-tur 51.3 60.4 (1.4) 54.4 (3.9)	great ing 61.9 45.7 (6.0) 76.6 (2.5)	49.7 36.1 (5.2) 60.7 (4.3)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man)	50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3)	t-base rform 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9)	d fine- stand 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7)	-tunin ard fi 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2)	g can ne-tur 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6)	great 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3)	49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations	50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3)	t-base rform 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2)	d fine stand 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5)	-tunin ard fi 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9)	g can ne-tur 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3)	great 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0)	49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations Prompt-based FT (auto)	50.8 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3) 68.3 (2.5)	t-base rform 51.7 5 <u>3.4 (0.6)</u> 47.8 (6.8) 70.5 (1.9) 72.0 (1.2) 70.1 (2.6)	d fine- stand 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5) 77.1 (2.1)	-tunin ard fil 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9) 68.3 (7.4)	g can ne-tur 51.3 <u>60.4 (1.4)</u> 54.4 (3.9) 69.1 (3.6) 68.7 (2.3) 73.9 (2.2)	great 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0) 76.2 (2.3)	49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8) 67.0 (3.0)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1) 75.0 (3.3)
Majority [†] Prompt-based zero-shot [‡] "GPT-3" in-context learning Fine-tuning Prompt-based FT (man) + demonstrations Prompt-based FT (auto) + demonstrations	50.8 50.8 52.0 (0.7) 45.8 (6.4) 68.3 (2.3) 70.7 (1.3) 68.3 (2.5) 70.0 (3.6)	t-base rform 51.7 53.4 (0.6) 47.8 (6.8) 70.5 (1.9) 72.0 (1.2) 70.1 (2.6) 72.0 (3.1)	d fine- stand 49.5 47.1 (0.6) 48.4 (4.8) 77.2 (3.7) 79.7 (1.5) 77.1 (2.1) 77.5 (3.5)	-tunin ard fi 50.8 53.8 (0.4) 60.2 (6.5) 64.5 (4.2) 69.2 (1.9) 68.3 (7.4) 68.5 (5.4)	g can ne-tur 51.3 60.4 (1.4) 54.4 (3.9) 69.1 (3.6) 68.7 (2.3) 73.9 (2.2) 71.1 (5.3)	great 61.9 45.7 (6.0) 76.6 (2.5) 74.5 (5.3) 77.8 (2.0) 76.2 (2.3) 78.1 (3.4)	49.7 36.1 (5.2) 60.7 (4.3) 65.5 (5.3) 69.8 (1.8) 67.0 (3.0) 67.7 (5.8)	STS-B (Pear.) -3.2 14.3 (2.8) 53.5 (8.5) 71.0 (7.0) 73.5 (5.1) 75.0 (3.3) 76.4 (6.2)

	SST-2	SST-5	MR	CR	MPQA	Subj	TREC	CoLA
	(acc)	(Matt.)						
Majority [†]	50.9	23.1	50.0	50.0	50.0	50.0	18.8	0.0
Prompt-based zero-shot [‡]	83.6	35.0	80.8	79.5	67.6	51.4	32.0	2.0
"GPT-3" in-context learning	84.8 (1.3)	30.6 (0.9)	80.5 (1.7)	87.4 (0.8)	63.8 (2.1)	53.6 (1.0)	26.2 (2.4)	-1.5 (2.4)
Fine-tuning	81.4 (3.8)	43.9 (2.0)	76.9 (5.9)	75.8 (3.2)	72.0 (3.8)	90.8 (1.8)	88.8 (2.1)	33.9 (14.3)
Prompt-based FT (man)	92.7 (0.9)	47.4 (2.5)	87.0 (1.2)	90.3 (1.0)	84.7 (2.2)	91.2 (1.1)	84.8 (5.1)	9.3 (7.3)
+ demonstrations	92.6 (0.5)	50.6 (1.4)	86.6 (2.2)	90.2 (1.2)	87.0 (1.1)	92.3 (0.8)	87.5 (3.2)	18.7 (8.8)
Prompt-based FT (auto)	92.3 (1.0)	49.2 (1.6)	85.5 (2.8)	89.0 (1.4)	85.8 (1.9)	91.2 (1.1)	88.2 (2.0)	14.0 (14.1)
+ demonstrations	93.0 (0.6)	49.5 (1.7)	87.7 (1.4)	91.0 (0.9)	86.5 (2.6)	91.4 (1.8)	89.4 (1.7)	21.8 (15.9)
Fine-tuning (full) [†]	95.0	58.7	90.8	89.4	87.8	97.0	97.4	62.6
2 usi	ng der	nonst	ration	s in co	ontext	leads	s to	ГЅ-В
cor	ncictor	nt aain	s in a	maior	rity of	tacks		Pear.)
Major	1313121	it gam	5 m a	major	10	ιασκσ	•	-
Prompt-based zero-shot [‡]	50.8	51.7	49.5	50.8	51.3	61.9	49.7	-3.2
"GPT-3" in-context learning	52.0 (0.7)	53.4 (0.6)	47.1 (0.6)	53.8 (0.4)	60.4 (1.4)	45.7 (6.0)	36.1 (5.2)	14.3 (2.8)
Fine-tuning	45.8 (6.4)	47.8 (6.8)	48.4 (4.8)	60.2 (6.5)	54.4 (3.9)	76.6 (2.5)	60.7 (4.3)	53.5 (8.5)
Prompt-based FT (man)	68.3 (2.3)	70.5 (1.9)	77.2 (3.7)	64.5 (4.2)	69.1 (3.6)	74.5 (5.3)	65.5 (5.3)	71.0 (7.0)
+ demonstrations	70.7 (1.3)	72.0 (1.2)	79.7 (1.5)	69.2 (1.9)	68.7 (2.3)	77.8 (2.0)	69.8 (1.8)	73.5 (5.1)
Prompt-based FT (auto)	68.3 (2.5)	70.1 (2.6)	77.1 (2.1)	68.3 (7.4)	73.9 (2.2)	76.2 (2.3)	67.0 (3.0)	75.0 (3.3)
+ demonstrations	70.0 (3.6)	72.0 (3.1)	77.5 (3.5)	68.5 (5.4)	71.1 (5.3)	78.1 (3.4)	67.7 (5.8)	76.4 (6.2)
Fine-tuning (full) ^{\dagger}	89.8	89.5	92.6	93.3	80.9	91.4	81.7	91.9

Ensemble Results

Prompt-based Fine-tuning	MNLI	RTE
Our single manual \mathcal{P}	68.3 (2.3)	69.1 (3.6)
$\mathcal{P}_{ ext{PET}}$	71.9 (1.5)	69.2 (4.0)
$\mathcal{P}_{ ext{ours}}, \mathcal{P}_{ ext{ours}} = \mathcal{P}_{ ext{PET}} $	70.4 (3.1)	73.0 (3.2)
+ demonstrations	74.0 (1.9)	71.9 (4.6)
$\mathcal{P}_{\mathrm{ours}}, \mathcal{P}_{\mathrm{ours}} = 20$	72.7 (2.5)	73.1 (3.3)
+ demonstrations	75.4 (1.6)	72.3 (4.5)

Table 4: Ensemble models using manual prompts from PET (Schick and Schütze, 2021a,b) and our automatic templates. PET uses 4 prompts for MNLI and 5 for RTE. We also use an equal number of templates in $|\mathcal{P}_{ours}| = |\mathcal{P}_{PET}|$ for a fair comparison.

Analysis of Generated Prompts

	SST-2	SNLI	TREC	MRPC
Manual	92.7	77.2	84.8	74.5
Auto T	92.3	77.1	88.2	76.2
Auto L	91.5	75.6	87.0	77.2
Auto T + L	92.1	77.0	89.2	74.0

Table 5: Comparison between manual prompts and different automatic prompt generation methods: autogenerated templates (Auto T), auto-generated label words (Auto L), and their combination (Auto T + L).

SST-2	(positive/negative)
Auto T	$\mathcal{M}(\mathcal{Y}) = \{ \text{great, terrible} \}$ #1 $\leq S_1 \geq A$ [MASK] one
	#2. $\langle S_1 \rangle$ A [MASK] piece.
	#3. $\langle S_1 \rangle$ All in all [MASK].
Auto L	$\mathcal{T}(x_{\mathrm{in}}) = \langle S_1 \rangle$ It was [MASK].
	#1. irresistible/pathetic
	#2. wonderful/bad
	#3. delicious/bad
SNLI	(entailment/neutral/contradiction)
Auto T	$\mathcal{M}(\mathcal{Y}) = \{$ Yes, Maybe, No $\}$
	#1. $$. [MASK], no, $$
	#2. $\langle S_1 \rangle$. [MASK], in this case $\langle S_2 \rangle$
	#2. $<\!S_1$ >. [MASK], in this case $<\!S_2$ > #3. $<\!S_1$ >. [MASK] this time $<\!S_2$ >
Auto L	#2. $$. [MASK], in this case $$ #3. $$. [MASK] this time $$ $\mathcal{T}(x_{in}) = $? [MASK], $$
Auto L	#2. $$. [MASK], in this case $$ #3. $$. [MASK] this time $$ $\mathcal{T}(x_{in}) = $? [MASK], $$ #1. Alright/Watch/Except
Auto L	#2. $\langle S_1 \rangle$. [MASK], in this case $\langle S_2 \rangle$ #3. $\langle S_1 \rangle$. [MASK] this time $\langle S_2 \rangle$ $\mathcal{T}(x_{in}) = \langle S_1 \rangle$? [MASK], $\langle S_2 \rangle$ #1. Alright/Watch/Except #2. Hi/Watch/Worse

Table 6: Examples of our automatically generated templates (Auto T) and label words (Auto L).

Analysis of Demonstration Sampling

	SST-2	SNLI	TREC	MRPC
Prompt-based FT	92.7	77.2	84.8	74.5
Uniform sampling	92.3	78.8	85.6	70.9
+ RoBERTa sel.	92.7	79.5	83.4	76.6
+ SBERT sel.	92.6	79.7	87.5	77.8

Table 7: Impact of demonstration sampling strategies. Uniform sampling randomly samples demonstrations, while selective (sel.) sampling only takes top sentences measured by the sentence encoders (§6).

Sample Efficiency

Figure 3: Standard fine-tuning vs our LM-BFF as a function of K (# instances per class). For lower K, our method consistently outperforms standard fine-tuning.

Discussion and Conclusion

Discussion

LM-BFF

- 1. Can be naturally posed as a "fill-in-the-blank" problem.
- 2. Have relatively short input sequences.
- 3. Do not contain many output classes. (for structured prediction?)

Conclusion

- Use prompt-based fine-tuning with automatically searched prompts;
- Include selected task demonstrations;
- LM-BFF outperforms vanilla fine-tuning by up to 30% (and 11% on average).

